2,744 research outputs found

    Selective voluntary forgetting in young and older adults

    Get PDF
    Aging is thought to involve a decline in executive-control capacities, although evidence regarding this claim is not always clear. Thus, although studies exist that suggest impoverished inhibitory memory control in older adults relative to younger adults, experiments with the list-method direct forgetting procedure have mostly failed to show adult-age differences in voluntary forgetting. In the present study we aimed to further study this issue by comparing young-old and young adults’ performance with the selective directed forgetting (SDF) procedure, which we assumed to involve higher demands of executive control than the standard nonselective procedure. Thus, on the basis of previous studies showing that a critical factor in finding adult-age differences in executive-control tasks is the overall challenge posed by the tasks, we predicted less SDF in older adults than in younger adults. Supporting our hypothesis, across three experiments we show evidence of older adults’ impoverished capacity to voluntarily forget episodic memories, although only when the task requires selective forgetting. Ours join other findings to suggest that sensitiveness to detect adult-age differences in cognitive control may strongly depend on the executive-control demands imposed by tasks

    Local field potential phase and spike timing convey information about different visual features in primary visual cortex

    Get PDF
    The natural visual environment is characterized by both “what/where” aspects (image features such as contrast or orientation which are defined by the relationship between visual signals simultaneously presented at different points in space) and “when” aspects, describing the temporal variations of the image features. Both “when” and “what/where” information is necessary to describe and understand the natural visual environment, and to take appropriate behavioral decisions. While “where” can be considered embedded as retinotopy, it is likely that localized neural populations in the visual cortex keep a simultaneous representation of both “what” and “when” aspects of the visual stimuli. However, little is yet known about how the spike trains of neurons in primary visual cortex encode both sources of information. The traditional hypothesis in systems neuroscience is that sensory variables are represented by a rate code, i.e. all sensory information is encoded by the number of spikes emitted over relatively long time windows. Although the relevance of rate in encoding static features is well established, this code can be inherently ambiguous in changing environments [1] and it is unlikely that this code is rich enough to represent simultaneously different types of information. Therefore here we explore the hypothesis that the timing of spikes is a crucial variable in representing both “what” and “when” aspects of the natural visual environment. To address these issues, we recorded single unit activity and LFPs in primary visual cortex of opiate anaesthetized macaques during the binocular presentation of naturalistic color movies. By means of computational analysis, we extracted several image features (color, orientation, luminance, space and time contrast, motion) from the receptive fields of each single neuron. We then considered two different spike timing codes previously studied in both the auditory [2] and the visual cortex [3]. In the first code, which we call spike patterns code, sequences of spike times from single neurons are measured (with a resolution of the order of 10 ms) with respect to the time course of the external stimulus. In the second code, which we call phase of firing code, spikes are measured with respect to the phase of the concurrent low frequency LFPs recorded from the same electrode as the spikes. We then used these data to investigate systematically which types of neural codes carry information about the static features of the image and which neural codes carry information about the time course of these features. We found that both “when” and “what” aspects are encoded simultaneously by spike times of visual cortical neurons. However, “what” and “when” are encoded by two different neural information streams; “what” aspects are encoded (on a fine scale of few ms) by spike patterns, and “when” stimulus aspects are encoded by the phase of firing (on a coarse scale of hundreds of ms)

    Spontaneous and deliberate future thinking: A dual process account

    Get PDF
    © 2019 Springer Nature.This is the final published version of an article published in Psychological Research, licensed under a Creative Commons Attri-bution 4.0 International License. Available online at: https://doi.org/10.1007/s00426-019-01262-7.In this article, we address an apparent paradox in the literature on mental time travel and mind-wandering: How is it possible that future thinking is both constructive, yet often experienced as occurring spontaneously? We identify and describe two ‘routes’ whereby episodic future thoughts are brought to consciousness, with each of the ‘routes’ being associated with separable cognitive processes and functions. Voluntary future thinking relies on controlled, deliberate and slow cognitive processing. The other, termed involuntary or spontaneous future thinking, relies on automatic processes that allows ‘fully-fledged’ episodic future thoughts to freely come to mind, often triggered by internal or external cues. To unravel the paradox, we propose that the majority of spontaneous future thoughts are ‘pre-made’ (i.e., each spontaneous future thought is a re-iteration of a previously constructed future event), and therefore based on simple, well-understood, memory processes. We also propose that the pre-made hypothesis explains why spontaneous future thoughts occur rapidly, are similar to involuntary memories, and predominantly about upcoming tasks and goals. We also raise the possibility that spontaneous future thinking is the default mode of imagining the future. This dual process approach complements and extends standard theoretical approaches that emphasise constructive simulation, and outlines novel opportunities for researchers examining voluntary and spontaneous forms of future thinking.Peer reviewe

    BN domains included into carbon nanotubes: role of interface

    Full text link
    We present a density functional theory study on the shape and arrangement of small BN domains embedded into single-walled carbon nanotubes. We show a strong tendency for the BN hexagons formation at the simultaneous inclusion of B and N atoms within the walls of carbon nanotubes. The work emphasizes the importance of a correct description of the BN-C frontier. We suggest that BN-C interface will be formed preferentially with the participation of N-C bonds. Thus, we propose a new way of stabilizing the small BN inclusions through the formation of nitrogen terminated borders. The comparison between the obtained results and the available experimental data on formation of BN plackets within the single walled carbon nanotubes is presented. The mirror situation of inclusion of carbon plackets within single walled BN nanotubes is considered within the proposed formalism. Finally, we show that the inclusion of small BN plackets inside the CNTs strongly affects the electronic character of the initial systems, opening a band gap. The nitrogen excess in the BN plackets introduces donor states in the band gap and it might thus result in a promising way for n-doping single walled carbon nanotubes

    An Explicit Strategy Prevails When the Cerebellum Fails to Compute Movement Errors

    Get PDF
    In sensorimotor adaptation, explicit cognitive strategies are thought to be unnecessary because the motor system implicitly corrects performance throughout training. This seemingly automatic process involves computing an error between the planned movement and actual feedback of the movement. When explicitly provided with an effective strategy to overcome an experimentally induced visual perturbation, people are immediately successful and regain good task performance. However, as training continues, their accuracy gets worse over time. This counterintuitive result has been attributed to the independence of implicit motor processes and explicit cognitive strategies. The cerebellum has been hypothesized to be critical for the computation of the motor error signals that are necessary for implicit adaptation. We explored this hypothesis by testing patients with cerebellar degeneration on a motor learning task that puts the explicit and implicit systems in conflict. Given this, we predicted that the patients would be better than controls in maintaining an effective strategy assuming strategic and adaptive processes are functionally and neurally independent. Consistent with this prediction, the patients were easily able to implement an explicit cognitive strategy and showed minimal interference from undesirable motor adaptation throughout training. These results further reveal the critical role of the cerebellum in an implicit adaptive process based on movement errors and suggest an asymmetrical interaction of implicit and explicit processes

    Pigmented nodular melanoma: the predictive value of dermoscopic features using multivariate analysis

    Get PDF
    BACKGROUND: Nodular melanoma (NM), representing 10-30% of all melanomas, plays a major role in global mortality related to melanoma. Nonetheless, the literature on dermoscopy of NM is scanty. OBJECTIVES: To assess odds ratios (ORs) to quantify dermoscopic features of pigmented NM vs. pigmented superficial spreading melanoma (SSM), and pigmented nodular nonmelanocytic and benign melanocytic lesions. METHODS: To assess the presence or absence of global patterns and dermoscopic criteria, digitized images of 457 pigmented skin lesions from patients with a histopathological diagnosis of NM (n = 75), SSM (n = 93), and nodular nonmelanocytic and benign melanocytic lesions (n = 289; namely, 39 basal cell carcinomas, 85 seborrhoeic keratoses, 81 blue naevi, and 84 compound/dermal naevi) were retrospectively collected and blindly evaluated by three observers. RESULTS: Multivariate analysis showed that ulceration (OR 4.07), homogeneous disorganized pattern (OR 10.76), and homogeneous blue pigmented structureless areas (OR 2.37) were significantly independent prognostic factors for NM vs. SSM. Multivariate analysis of dermoscopic features of NM vs. nonmelanocytic and benign melanocytic lesions showed that the positive correlating features leading to a significantly increased risk of NM were asymmetric pigmentation (OR 6.70), blue-black pigmented areas (OR 7.15), homogeneous disorganized pattern (OR 9.62), a combination of polymorphous vessels and milky-red globules/areas (OR 23.65), and polymorphous vessels combined with homogeneous red areas (OR 33.88). CONCLUSIONS: Dermoscopy may be helpful in improving the recognition of pigmented NM by revealing asymmetric pigmentation, blue-black pigmented areas, homogeneous disorganized pattern and abnormal vascular structures, including polymorphous vessels, milky-red globules/areas and homogeneous red areas

    Electrophysiological evaluation of phrenic nerve injury during cardiac surgery – a prospective, controlled, clinical study

    Get PDF
    BACKGROUND: According to some reports, left hemidiaphragmatic paralysis due to phrenic nerve injury may occur following cardiac surgery. The purpose of this study was to document the effects on phrenic nerve injury of whole body hypothermia, use of ice-slush around the heart and mammary artery harvesting. METHODS: Electrophysiology of phrenic nerves was studied bilaterally in 78 subjects before and three weeks after cardiac or peripheral vascular surgery. In 49 patients, coronary artery bypass grafting (CABG) and heart valve replacement with moderate hypothermic (mean 28°C) cardiopulmonary bypass (CPB) were performed. In the other 29, CABG with beating heart was performed, or, in several cases, peripheral vascular surgery with normothermia. RESULTS: In all patients, measurements of bilateral phrenic nerve function were within normal limits before surgery. Three weeks after surgery, left phrenic nerve function was absent in five patients in the CPB and hypothermia group (3 in CABG and 2 in valve replacement). No phrenic nerve dysfunction was observed after surgery in the CABG with beating heart (no CPB) or the peripheral vascular groups. Except in the five patients with left phrenic nerve paralysis, mean phrenic nerve conduction latency time (ms) and amplitude (mV) did not differ statistically before and after surgery in either group (p > 0.05). CONCLUSIONS: Our results indicate that CPB with hypothermia and local ice-slush application around the heart play a role in phrenic nerve injury following cardiac surgery. Furthermore, phrenic nerve injury during cardiac surgery occurred in 10.2 % of our patients (CABG with CPB plus valve surgery)

    Attention modulates adaptive motor learning in the ‘broken escalator’ paradigm

    Get PDF
    The physical stumble caused by stepping onto a stationary (broken) escalator represents a locomotor aftereffect (LAE) that attests to a process of adaptive motor learning. Whether such learning is primarily explicit (requiring attention resources) or implicit (independent of attention) is unknown. To address this question, we diverted attention in the adaptation (MOVING) and aftereffect (AFTER) phases of the LAE by loading these phases with a secondary cognitive task (sequential naming of a vegetable, fruit and a colour). Thirty-six healthy adults were randomly assigned to 3 equally sized groups. They performed 5 trials stepping onto a stationary sled (BEFORE), 5 with the sled moving (MOVING) and 5 with the sled stationary again (AFTER). A 'Dual-Task-MOVING (DTM)' group performed the dual-task in the MOVING phase and the 'Dual-Task-AFTEREFFECT (DTAE)' group in the AFTER phase. The 'control' group performed no dual task. We recorded trunk displacement, gait velocity and gastrocnemius muscle EMG of the left (leading) leg. The DTM, but not the DTAE group, had larger trunk displacement during the MOVING phase, and a smaller trunk displacement aftereffect compared with controls. Gait velocity was unaffected by the secondary cognitive task in either group. Thus, adaptive locomotor learning involves explicit learning, whereas the expression of the aftereffect is automatic (implicit). During rehabilitation, patients should be actively encouraged to maintain maximal attention when learning new or challenging locomotor tasks

    The Binding of Learning to Action in Motor Adaptation

    Get PDF
    In motor tasks, errors between planned and actual movements generally result in adaptive changes which reduce the occurrence of similar errors in the future. It has commonly been assumed that the motor adaptation arising from an error occurring on a particular movement is specifically associated with the motion that was planned. Here we show that this is not the case. Instead, we demonstrate the binding of the adaptation arising from an error on a particular trial to the motion experienced on that same trial. The formation of this association means that future movements planned to resemble the motion experienced on a given trial benefit maximally from the adaptation arising from it. This reflects the idea that actual rather than planned motions are assigned ‘credit’ for motor errors because, in a computational sense, the maximal adaptive response would be associated with the condition credited with the error. We studied this process by examining the patterns of generalization associated with motor adaptation to novel dynamic environments during reaching arm movements in humans. We found that these patterns consistently matched those predicted by adaptation associated with the actual rather than the planned motion, with maximal generalization observed where actual motions were clustered. We followed up these findings by showing that a novel training procedure designed to leverage this newfound understanding of the binding of learning to action, can improve adaptation rates by greater than 50%. Our results provide a mechanistic framework for understanding the effects of partial assistance and error augmentation during neurologic rehabilitation, and they suggest ways to optimize their use.Alfred P. Sloan FoundationMcKnight Endowment Fund for Neuroscienc

    A search for the decay modes B+/- to h+/- tau l

    Get PDF
    We present a search for the lepton flavor violating decay modes B+/- to h+/- tau l (h= K,pi; l= e,mu) using the BaBar data sample, which corresponds to 472 million BBbar pairs. The search uses events where one B meson is fully reconstructed in one of several hadronic final states. Using the momenta of the reconstructed B, h, and l candidates, we are able to fully determine the tau four-momentum. The resulting tau candidate mass is our main discriminant against combinatorial background. We see no evidence for B+/- to h+/- tau l decays and set a 90% confidence level upper limit on each branching fraction at the level of a few times 10^-5.Comment: 15 pages, 7 figures, submitted to Phys. Rev.
    • 

    corecore